Data Mining: Introduction

Mike Bowles, PhD Patricia Hoffman, PhD

http://machinelearning2010fall.pbworks.com/w/p age/30032895/FrontPage

http://patriciahoffmanphd.com/

Machine Learning Consulting / Corporate Training

Available for Consulting - Corporate Training

Currently Teaching at Hacker Dojo Next Class Starts in January

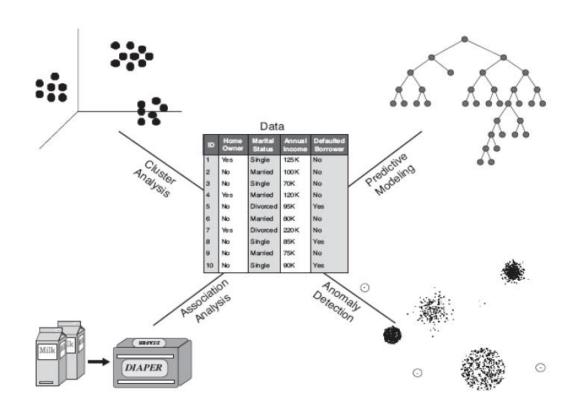
http://machinelearning2010fall.pbworks.com/w /page/30032895/FrontPage

Machine Learning

Statistics

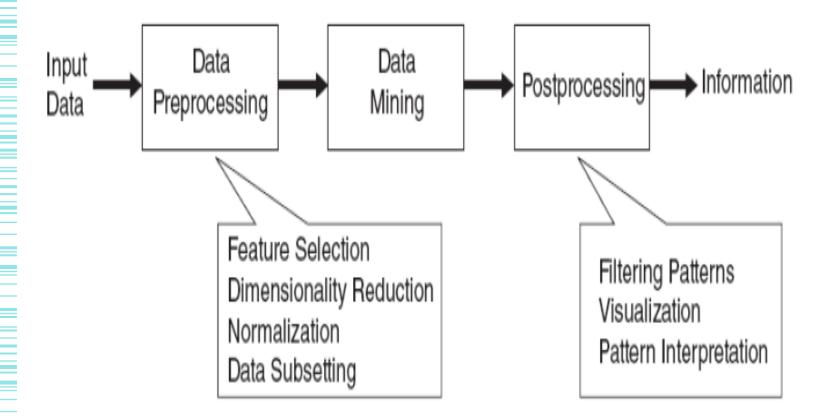
- Networks Graphs
- Weights
- Learning
- Generalization
- Supervised Learning
- Unsupervised Learning
- Large Grant = \$1,000,000
- Conference: French Alps Snowbird, Utah
 Quote from Pro

- Models
- Parameters
- Fitting
- Test Set Performance
- Regression / Classification
- Density Estimate/Clustering
- Large Grant = \$50,000
- Conference:


Los Vegas in August

Quote from Professor Robert Tibshirani, PhD

Machine Learning Examples


Problem Domain	Application	Input Pattern	Pattern Classes
Bioinformatics	Sequence analysis	DNA/Protein sequence	Known types of genes/ patterns
Data mining	Searching for meaningful patterns	Points in multi- dimensional space	Compact and well- separated clusters
Document classification	Internet search	Text document	Semantic categories (e.g., business, sports, etc.)
Document image analysis	Reading machine for the blind	Document image	Alphanumeric characters, words
Industrial automation	Printed circuit board inspection	Intensity or range image	Defective / non-defective nature of product
Multimedia database retrieval	Internet search	Video clip	Video genres (e.g., action, dialogue, etc.)
Biometric recognition	Personal identification	Face, iris, fingerprint	Authorized users for access control
Remote sensing	Forecasting crop yield	Multispectral image	Land use categories, growth pattern of crops
Speech recognition	Telephone directory enquiry without operator assistance	Speech waveform	Spoken words

Data Mining Tasks

Introduction to Data Mining - Pang-Ning Tan et al

Knowledge Discovery Process

Introduction to Data Mining Pang-Ning Tan et al

Wine Classification Problem

- This data set comes from UCI Machine Learning Repository

 Standard Source of Data for Testing Algorithms
- The red wine dataset has 1599 examples.
 - Each example has numerical values for 11 measured attributes and
 - Quality score assigned by wine tasters
- If we had the measured attributes could we
 - Stuff predict the score a taster would give the wine?

Example 1: Inspect the Red Wine Data Set

Regression

- For each output ("quality" for the wine data set) we have a corresponding set of inputs (alcohol, sulphites, etc.).
- Arrange the outputs into a column vector $\mathbf{Y} = [y_1, y_2, \dots, y_n]^T$
- Define a matrix $\mathbf{X} = [\mathbf{1} : (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_m)^T]$

$$X = \begin{vmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \dots & x_{2m} \\ 1 & z_{11} & z_{12} & \dots & z_{1m} \\ 1 & z_{11} & z_{12} & \dots & z_{1m} \end{vmatrix}$$

Normal Equation Solution

Find best function (X is the input $p \times N$ matrix)

 $\tilde{y} = \mathbf{X}\beta$

Oservations: $(X_1, X_2, ..., X_p)$ Regression Coef: $\hat{\beta} = (\beta_0 ... \beta_p)$

minimize RSS $\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$ Solution: $\widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

1

Ordinary Least-Squares Regression

Example 2: Predict Quality Score Ordinary Least Squares Regression

Will OLS work for classification?

♦ OLS worked okay for numeric input and numeric output. What about if the output is binary – a classification problem?

- ♦ Sonar Data mines vs rocks
 - 208 instances,
 - 97 instances of rocks
 - 111 from a metal cylinder approximating a mine.
 - Chirped sonar,
 - 60 measure of signal strength.
- ♦ Classify as rock vs mine.

Example 3: Classify Sonar Data using OLS Regression

Cross-Validation

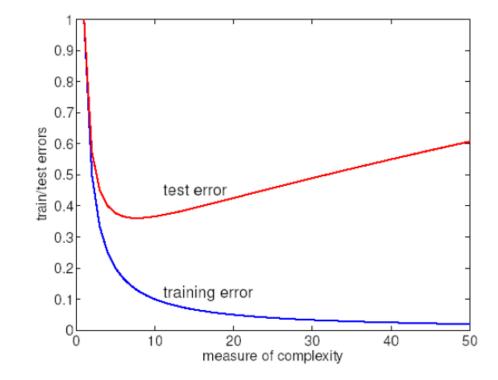
We used 78/208 of our data to check for overfitting. Here's an orderly process to incorporate testing alongside training.

Example 3 Continued: Using Cross-Validation

What to do about Over-fitting

Sonar data showed that we can reduce over-fitting with more data
But we ran out. Now what?
How can we systematically control model complexity?
We'll explain a technique called "ridge regression" provides control

Ridge Regression


 $\lambda \ge 0$ complexity parameter controls shrinkage. $\lambda = 0 \Rightarrow$ solution is the same as regular regression. λ penalizes the sum-of-squares of the parameters.

Minimize

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

2

Complexity – Model Fitting

Example 4: Ridge Regression Sonar Data

Multiclass Problem

The Target Y = {a, b, c, ...}
 multiple values – Iris Data

One-Against-Rest (1-r)

- Solve a separate binary classification problem for each possible classification

Test Instances Classified

- combine predictions from binary classifiers
- voting scheme or probability estimate

Multi-class Problems

With two-class data we could use linear regression by calling class1 = 1 and class2=-1

What about data that fall into more than one class?

For example the iris data

One way is "one versus the rest"

Example 5: Using regression for Iris Data

Wrap up

- If have questions feel free to contact us
- Join us at Hacker Dojo class in January
- Eager to help with Startups
- Provide Consulting
- Provide Training